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The s tabi l i ty  of s teady gradien ta l  flow of a uon-Newtonian fluid with a power - t aw  theologica l  
behav io r  in a channel with e las t ic  wails  is analyzed.  

With r e g a r d  to ce r ta in  p r o b l e m s  in b iomechan ics  and p o l y m e r  phys ics ,  the authors  of [1, 2] have 
studied the hydrodynamic  s tabi l i ty  of s teady flow modes  of non-Newtonian fluids. They cons idered  the 
s tabi l i ty  of flow in channels  with undeformable  wal ls .  It would be of i n t e r e s t  to cons ider  the s tabi l i ty  of 
flow of such fluids in channels  with e las t ic  walls  and to analyze  how the c r i t i ca l  Reynolds number  is a f -  
fected by the e las t ic  p r o p e r t i e s  of such wai ls .  

We cons ider  the gradienta l  flow of a fluid with a p o w e r - l a w  rheologica l  behav io r  in a f iat  channel.  
The dis t r ibut ion of the d imens ion less  veloci ty  is in this case  [3] 

n+__2 
U (y) =~ l - - t y l  " ( - - l  ,~.y .... l), (i) 

with n denoting the rheological  p a r a m e t e r  of the s y s t e m .  The p rob l em of s tabi l i ty  here  in r e sponse  to 
inf in i tes imal ly  sma l l  two-d imens iona l  pe r tu rba t ions  reduces  to that of un ive r sa l  O r r - S o m m e r f e l d  equa-  
tion [1]. 

The f i r s t  pa i r  of l inear ly  independent solut ions $1,2 is sought in the fo rm of s e r i e s ,  following the 
gene ra l  p r o c e d u r e  [1, 4], with the aid of the r e c u r r e n c e  re la t ions  for  the coeff icients  [5]. The second pa i r  
of l inear ly  independent t e rmina t ing  solut ions ~3,4 is 

n--I  g ] ( 2) 
n(DU) "-1 dg j -  

Ye 

Here  Ye denotes  the c r i t i ca l  point where  the flow veloci ty  is equal to the pe r tu rba t ion  veloci ty  and Re 

= p U ~ - n L n / k n  is the un ive r sa l  Reynolds  number .  

The genera l  solution to the un ive r sa l  O r r - S o m m e r f e l d  equation will be sought as a superpos i t ion  of 
the l inear ly  independent solutions:  

4 

(y) = ~ C~i, (3) 
i=1 

with the a r b i t r a r y  constants  C i. 

In o r d e r  to find the e igenvalues  of the O r r - S o m m e r f e l d  equation, it is n e c e s s a r y  to es tab l i sh  the 
boundary  conditions of the p rob lem.  We will cons ide r  only no rma l  s t r a ins  of the channel walls ,  s ince ca l -  
culat ions have shown that tangential  s t r a ins  have a negligible effect  on the flow stabi l i ty  - jus t  as in the 
ease  of a Newtonian fluid [6]. 

In the case  of sma l l  no rm a l  d i sp lacements ,  the s t r a i n - s t r e s s  re la t ion  for  an e las t ic  walt can be 
wri t ten  as follows: 
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Fig.  1. Curves  of neu t ra l  s tabi l i ty  for  n = 0.7 and 1.5 at 0 = 7r/6 
and with k = 0, 0.3, 0.6, 0.9. 

Fig.  2. Relat ion between ~ecr- 1/3 and p a r a m e t e r  k for  n = 0.7, 1.0, 
1.5 a t  0 = v/6.  

= kpe~e. (4) 

Here  ~ denotes  the n o r m a l  d i sp lacemen t  of a wall  su r face .  

Different ia t ing (4) with r e s p e c t  to t ime  and exp re s s ing  all  quanti t ies  in t e r m s  of pe r tu rba t ions ,  with 
the equation of flow p rope r l y  taken into account,  we obtain the following boundary conditions a t  a wall: 

kcn (DU) n-x ~,,, (~1) + [e - ~ ~  kcDV ( ~  1)]~2 (--1). 
is  Re 

_D~U(DU)n_ 2 kcn (n - -  1) [~p"(--1) -I ~2~p (--1)] ----- 0, (5) 
is  Re 

, , ( - -1)  =0. 

It is  to be  noted that, when n = 1, e x p r e s s i o n s  (5) b e c o m e  the cor responding  boundary conditions for  
a Newtonian fluid [6]. 

The second pa i r  of boundary  condit ions,  at  the cen te r  of the channel y = 0, needed for  solving the 
u n i v e r s a l  O r r - S o m m e r f e l d  equation a re  found as  follows [5]. 

F o r  di la tant  fluid (n > 1) DU(0) = 0. T h e r e f o r e ,  the t e rmina t ing  solut ions ~b3,a(0) = 0 and the i r  d e r i -  
va t ives  D~b3,4(0) a r e  s ingular .  The s ingular i ty  in the der iva t ive  of the genera l  solution (3) at point y = 0 
is r emovab le ,  if the condition 

c~:N,. (o) + C,D,I,, (o) = o. (6) 

is  sa t i s f ied .  

The condition of e v e n - n u m b e r e d  pe r tu rba t ions  at  point y = 0 
4 

C,D , = o (7)  

l = l  

together  with conditions (5) and (6), y ie ld  a s ecu l a r  equation which, with all  t e r m s  ranked  accord ing  to thei r  
o r d e r s  of magni tude,  can be wr i t ten  as 

r ( .  i.) 
r  i) = Dr 
D~3 (-- I )  ]D~x(--1 ) 

I z:N~l (0) 

(8) 

r I 
O,l,~ (0) kc' 

D ~  (--  1) I [e-m - -  kcOV (--1)1 

Dr CO) I 
The lef t -hand side of Eq. (8} can be e x p r e s s e d  in t e r m s  of the tabulated Ti t jens  function [4]; the 

r igh t -hand  side of Eq. (8) can be evalua ted  on the ba s i s  of the solut ions given he re  e a r l i e r .  

A s tabi l i ty  ana lys i s  of pseudoplas t ic  fluids can, in the final count, a l so  be  reduced  to finding the 
e igenvalues  of the s ecu la r  equation (8). 
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Some resul t s  of calculations made for  walls with compliance in the normal  direct ion are  shown in 

Figs.  1 and 2. 

The curves  in Fig. 1 depict the neutral  stabil i ty for n = 0.7 and 1.5, at  various values of the p a r a m -  

e ter  k with 0 = v / 6 .  

The curves  in Fig. 2 depict the un iversa l  c r i t ica l  Reynolds number  as a function of k, for n = 0.7, 
1.0, 1.5 and 0 = r /6 .  At a given phase shift, according  to this graph, the un iversa l  cr i t ica l  Reynolds num- 
be r  is a monotonic function of k. Such a trend is explainable in t e rms  of the energy flux t ransmit ted  f rom 
the ma ins t r eam to an elast ic  wall. This flux is W = - p ~  ~ kp 2 sin ~, i . e . ,  proport ional  to k and, therefore ,  
there must  be some monotonic relat ion between the flow stabili ty and the p a r a m e t e r  k. For  a given value 
of k, moreove r ,  the cr i t ica l  Reynolds number  dec reases  with higher  values of n. This can be explained 
as follows. As is well known, the flow stabili ty depends on the shape of the velocity profile and thus, in 
the final analysis ,  the Reynolds s t r e s s e s  influence the mechanism of energy t rans fe r  f rom the ma ins t ream 
to the per turbat ions .  A f lat ter  velocity profi le will be more  stable [7, 8]. Since the veloci ty profile (1) 
becomes  f la t ter  for lower values of n, hence one should obviously expect the cr i t ica l  Reynolds number  to 
become higher  as the value of n dec reases  (with all other  conditions unchanged). 

n and k n 
x and y 
U(y) 
D = d/dy 
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N O T A T I O N  

are  the theological  p a r a m e t e r s  of a fluid; 
are  Car tes ian  coordinates;  
is the velocity profi le;  
is the differential  opera tor ;  
is the wave number;  
is the velocity of per turbat ion propagation;  
is the channel half-width; 
~s the cha rac te r i s t i c  velocity;  
~s the amplitude of the f low-per turbat ion function; 
~s the variable component of p r e s s u r e  on a wall; 
is a p a r a m e t e r  which cha rac t e r i ze s  the elast ic  p roper t i e s  of a wall; 
is the phase shift between s t r e s s e s  and s t ra ins  in a wall. 
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